
Get insights into SQL database integrity and consistency issues & how to fix database

corruption in different scenarios.

MICROSOFT
SQL DATABASE
CORRUPTION

www.stellarinfo.com© Copyright Stellar Information Technology Pvt. Ltd. All Trademarks Acknowledged.

TROUBLESHOOTING GUIDE

CONTENTS

MICROSOFT SQL DATABASE CORRUPTION — TROUBLESHOOTING GUIDE

INTRODUCTION 01

WHAT IS SQL DATABASE CORRUPTION? 02

CAUSES OF SQL DATABASE CORRUPTION 03

TYPES OF SQL DATABASE CORRUPTION 03

SQL DATABASE CORRUPTION — COMMON ERROR CODES 04

SQL SERVER OUTAGE — DATABASE CORRUPTION SCENARIOS 06

TROUBLESHOOTING SQL DATABASE CORRUPTION 07

REPAIRING SQL DATABASE CORRUPTION 14

SQL DATABASE REPAIR TOOL 16

CLOSING NOTES 16

REFERENCES 16

00

INTRODUCTION

Microsoft SQL Server is a Relational Database Management System (RDBMS) used to manage vast

data. It supports a broad range of dataset operations, including data storage and retrieval, business

analytics and BI, transaction processing, etc. An extensive “enterprise-grade” SQL database might

handle several Terabytes of business-critical information, customer data, etc., enabling a seamless

frontend experience by processing several thousand queries in seconds.

Maintaining this enormous database’s integrity and availability is a crucial responsibility for the

Database Administrator (DBA) and SQL database corruption poses a formidable challenge to the

fulfillment of this responsibility. Firstly, SQL database corruption may happen gradually without

sufficient indications to allow early detection. Therefore, the Administrator may discover SQL

corruption only after it begins affecting the frontend operations, leaving no recourse unless there

is a restorable backup. Also, the large size of SQL databases complicates troubleshooting SQL database

corruption issues.

This Guide shares detailed information on SQL Server database corruption, including aspects like

what is SQL database corruption, types, scenarios, & causes, & how to fix SQL database corruption.

Our purpose is to provide a consolidated and credible reference with actionable insights to support

the troubleshooting of SQL database corruption. The information covered herein applies to SQL

Server 2019, 2017, 2016, 2014, and earlier versions.

01MICROSOFT SQL DATABASE CORRUPTION — TROUBLESHOOTING GUIDE

WHAT IS SQL DATABASE CORRUPTION?
Understanding the nature of SQL database corruption becomes easy with the awareness of where and
how the data is stored in a SQL database. There are different database structures and units that store
the data in a SQL database, as follows:

1. Record: This is essentially a row for storing the individual data records comprising table data, indexes,
metadata, boot structures, etc. Each data record stores the “data type” information, i.e., fixed-length or
variable length, record type, record length, columns with null values, etc.

2. Page: Pages are the smallest unit of data for storing the data records, index records, and metadata
(stored in Boot page). The structure of a SQL database page comprises Header and Body, totaling 8 KB
in size. The header consists of information such as the available free space and total records in the page
body, the object associated with the page, preceding and succeeding pages, etc. The page body
consists of a record offset array at the end, which contains the pointers to the records’ physical storage
location (byte index). Any mutation or defect in the page header or body, including the slot array,
can affect the database integrity, causing page-level corruption in the SQL database.

3. Heap: A heap is essentially a table without a clustered index. Microsoft SQL Server relies on Index
Allocation Map (IAM) — a type of page for keeping track of heaps and indexes in the same database. A
single IAM can track about 4 GB of data in groups of eight pages called extents. The IAM page Header
section stores the address to the first extent in the series of mapped pages up to the size limit of 4 GB,
beyond which SQL Server creates another IAM page referenced through a pointer in the first IAM
page. IAM page issues or an alteration in the chain of connections is another way to perceive
SQL database corruption.

4. Index: An index is a data structure that stores the data pages in a logical sequence, irrespective of
their physical storage sequence, based on the keys in a B-Tree structure. The purpose of an index is to
retrieve a row (or record) from the table or view efficiently. There are two types of indexes, namely clus-
tered index and non-clustered index, as follows:

 • Clustered Index: stores the b-tree, keys, and the actual record at the leaf level

 • Non-Clustered Index: stores the b-tree, keys, and pointers (addresses) to the rows

SQL Server reads the database records by scanning the b-tree through the pointers connecting the
different pages in the tree. These pointers are stored in sys.sysallocunits – a System Base Tables used
to store the metadata information (here, pointer) of each storage allocation unit. An anomaly in the
index data structure can affect the database’s ability to read and retrieve the database records,
especially in non-clustered indexes. This situation is considered as SQL database corruption.

02MICROSOFT SQL DATABASE CORRUPTION — TROUBLESHOOTING GUIDE

03MICROSOFT SQL DATABASE CORRUPTION — TROUBLESHOOTING GUIDE

CAUSES OF SQL DATABASE CORRUPTION
As understood, the root cause of SQL database corruption is a mutation or defect in the database page

or data structures like heap and index. Broadly, there are three reasons for corruption, namely—

1. HARDWARE FAILURE OR CRASH
SQL Server runs on a computer system and stores the database files on storage disks, which could be

individual hard disk drives configured on a rack-mount server or a Redundant Array of Independent

Disks (RAID). The storage hardware and computer can deteriorate, fail, and crash due to reasons such

as the follows —

 • Mechanical wear and tear

 • Disk subsystem issues

 • Power surge or failure

 • Motherboard failure

These hardware-related reasons can lead to SQL database corruption due to abrupt stoppage or crashing

of the database, bad sectors on the storage disk, disk subsystem failure, etc. Notably, hardware failure

is a significant reason behind SQL database corruption.

2. SOFTWARE ISSUES
There are software-related (or logical) issues resulting in SQL database corruption. The most common

of these include—

 • Improper SQL Server version upgrade

 • Malware infection

 • Firmware bug

 • Incompatible or faulty drivers

TYPES OF SQL DATABASE CORRUPTION
SQL Server database corruption types can manifest at various levels (pages, log file, etc.) and in several

forms, as this section outlines.

1. SQL PAGE LEVEL CORRUPTION
In a previous section, we understood that a SQL database page is the smallest unit of data for storing

the records, indexes, etc. SQL Server stores the data and schema in a specific type of page called the

MDF file (.mdf file extension), also known as the primary database file. This file comprises a header,

body, and slot array like any other SQL Server database page. Any alteration or removal of information

in these sections results in a SQL database page level corruption.

04

2. BOOT PAGE CORRUPTION

There is a boot page in the SQL Server database, storing the metadata such as database version, database

name and ID, compatibility, checkpoint Log Sequence Number (LSN), purity status, etc. When a SQL

Server instance is initiated, it reads the boot page and records the last CHECKDB run date in the error

log. Any defect in the boot page hampers this start-up process and affects the recovery of a crashed or

corrupted SQL database.

This is because it is impossible to perform a page-level restoration for a corrupted boot page or fix it

using DBCC CHECKDB. Troubleshooting the boot page corruption scenarios is inherently challenging

considering there is only one boot page per database, i.e., page 9 in the first data file, and boot page

issues can hamper the backup process.

3. INDEX CORRUPTION

In a SQL database, indexes are the data structures used for retrieving table records. As learned previously,

there can be clustered or non-clustered indexes based on how they store the B-Tree, keys, database

records, and pointers. Any alteration or defect in how this information is organized in the index can

affect the database’s ability to store and retrieve the records, which is known as index corruption.

4. SQL DATABASE IN SUSPECT MODE

SQL Server can mark a database “Suspect” typically when it fails to recover the database to a consistent

transactional state due to corruption in the form of torn pages, etc. The root cause this issue could be

I/O problems, disk issues, or other underlying hardware-related abnormalities. The Suspect Mode

situation arrives while initiating a SQL Server instance, attaching a database, or restoring the database

or transaction logs.

SQL DATABASE CORRUPTION — COMMON ERROR CODES
SQL Server database engine generates specific error codes to indicate the corruption instances.

Understanding these error messages helps in troubleshooting these issues. The following table

summarizes these error codes:

MICROSOFT SQL DATABASE CORRUPTION — TROUBLESHOOTING GUIDE

05

SQL error
3624

Database
corruption

7.

SQL error 963

SQL error 926
Database-
level issue

Database-
level issue

SQL error 8231.

2.

3.

4.

5.

6.

Error Code Error Type Description Severity Level

The operating system returns

error code 823 when Windows

API calls fail to perform file Input/

output operations.

High — error 823 can affect

database integrity & therefore

requires immediate rectification.

Operating
system-level
issue

SQL error 825
Hardware
issue

SQL error 605
Page-level
issue

SQL error 824

SQL data engine returns

error code 824 when a logical

consistency check fails after

reading or writing a page.

Error 825 occurs when SQL needs

to reissue the read operation,

indicating a major issue with the

disk hardware.

Error 605 occurs when the SQL

server encounters corruption

while reading the pages from a

table.

SQL database is marked “Suspect

Mode” when it fails to recover the

database to a consistent state.

SQL database is in suspect mode

due to events that happened

during the upgrade

The error occurs when the system

assertion checks fails due to

database corruption. It can also

appear due to an application bug.

High — should be addressed

promptly if results due to

database corruption.

Moderate — requires action

to restore the database online.

High — error 824 indicates a

hardware or storage system

problem resulting in file

system issues or database

corruption.

High — requires immediate

resolution to avoid database

corruption and data loss.

High — error 605 is considered

high severity if it doesn’t resolve

itself (i.e., non-transient)

High — can hamper business

continuity if it remains unresolved

for a prolonged duration.

Page-level
error

MICROSOFT SQL DATABASE CORRUPTION — TROUBLESHOOTING GUIDE

06

SQL SERVER OUTAGE — DATABASE CORRUPTION SCENARIOS
This section outlines scenarios that entail business disruption in the SQL Server environment due to
database-related issues. Notably, there is no or limited provision in SQL to handle these disruptive
events automatically. The purpose is to shed light on such challenging situations that SQL administrators
might encounter at least once, as follows:

1. DATA DELETION OR CORRUPTION WITHOUT BACKUP
This situation can arrive due to human error, software bug, or malware attack. For example, unintended
use of statements like DELETE, TRUNCATE, or DROP can delete database records is considered a
human error. Similarly, a malware attack can result in SQL database corruption like happened with a
large multinational corporation due to NotPetya ransomware. The company’s Management Information
System failed to connect with the backend database, which was offline due to corruption. Read this

case study to learn more. Another situation is when a software bug or database damage results in
system assertion check failure, encountered as SQL error code 3624 described earlier in the table.

MICROSOFT SQL DATABASE CORRUPTION — TROUBLESHOOTING GUIDE

SQL error
5172

SQL error
8930

SQL error
8946

8.

9.

10.

SQL error
9004

11.

Error Code Error Type Description Severity Level

Error 5172 indicates MDF file

header data corruption, and it

appears when SQL is unable to

attach the database due to

mismatched header information.

SQL Server encounters error 8930

when DBCC CHECKDB terminates

due to metadata corruption.

The error 8946 appears typically

when the disk subsystem

overwrites the data on a file,

leading to page corruption.

Error 9004 is encountered due to

damage in the transaction log. It

appears while processing the

transaction log during database

rollback, recovery, or replication.

High — requires immediate

backup restore or database

repair.

High — the error cannot be

repaired and requires database

restoration from backup.

The severity level depends upon

the specific page and extent of

corruption.

Moderate to High — can be

fixed with backup restore, if

available. Else, it will need

transaction log repair and

rebuilding.

Database-
level problem

Page-level
problem

Transaction
log issue

Database-
level issue

07MICROSOFT SQL DATABASE CORRUPTION — TROUBLESHOOTING GUIDE

These issues can cause a prolonged outage if there is no backup. The administrators will need to

troubleshoot the root cause with a focus on restoring the original database consistency & completeness.

2. HARDWARE FAILURE

Earlier, we read hardware failure as a major cause of SQL database corruption. The situation can lead

to an outage in the absence of High Availability architecture that ensures up to 99.995% availability.

Nevertheless, hardware crashes do happen, often without warning or indication, threatening the database

integrity. The common hardware failure scenarios in SQL Server include disk problem, power outage,

power surge, system crash due to motherboard issues, etc. The Administrator needs to fix the hardware

issue after diagnosis and resolve the database inconsistencies to restore access. Hardware failure has

severe implications for a SQL Server environment, particularly if there is no automatic recovery mechanism

like high availability or backups.

3. DATACENTER OUTAGE

A datacenter-level outage is uncommon, but it may happen if there is a natural disaster like an earthquake,

& no offsite automated failover mechanism or geo-replication is available to support disaster recovery.

Notably, a datacenter outage can materialize due to database corruption, among other situations like

server or network level issues. For example, a SQL database may turn into Suspect Mode while recovering

from a power outage, resulting in an outage if there is no backup and recovery mechanism. Read this

case study for real-world insight into the datacenter outage due to SQL database corruption.

TROUBLESHOOTING SQL DATABASE CORRUPTION
Troubleshooting a corrupted SQL Server database requires diligent planning & execution to get optimal

results. Aside from the outcome, the database recovery duration is essential to meet the Recovery

Time Objective (RTO). Be aware that troubleshooting SQL database issues takes time and poses specific

challenges based on the root cause and extent of corruption. Therefore, following a systematic repair

process is crucial to restoring the database to its original state in the shortest duration. This section

provides hands-on guidance for fixing SQL database corruption through the following steps:

STEP 1: CHECK THE DATABASE INTEGRITY AND DETECT ERRORS
This step focuses on diagnosing the nature & extent of corruption by checking the SQL Server database

integrity and consistency using the Database Console Commands or DBCC CHECKDB commands. The

commands can check the integrity of the complete database, individual table and view, or catalog.

08

REPAIR_FAST

Presence of the REPAIR_FAST parameter is for maintaining the

syntax for backward compatibility. It does not perform any repair

action on the database.

database_name | database_id | 0

DBCC CHECKDB Argument Description

This field identifies and intakes the SQL Server database object by

name or unique ID. It considers the current database if ‘0’ is input

as the value.

NOINDEX

NOINDEX parameter in the CHECKDB command specifies that

non-clustered indexes in the user tables should not be intensively

checked. NOINDEX reduces the execution time for the command.

MICROSOFT SQL DATABASE CORRUPTION — TROUBLESHOOTING GUIDE

The DBCC CHECKDB command can take several arguments, including database_name, database_id,

NOINDEX, REPAIR_ALLOW_DATA _LOSS, REPAIR_FAST, REPAIR_REBUILD, etc. The following is a short

description of these arguments:

DBCC CHECKDB
 [(database_name | database_id | 0
 [, NOINDEX
 | , { REPAIR_ALLOW_DATA_LOSS | REPAIR_FAST | REPAIR_REBUILD }]
)]
 [WITH
 {
 [ALL_ERRORMSGS]
 [, EXTENDED_LOGICAL_CHECKS]
 [, NO_INFOMSGS]
 [, TABLOCK]
 [, ESTIMATEONLY]
 [, { PHYSICAL_ONLY | DATA_PURITY }]
 [, MAXDOP = number_of_processors]
 }
]
]

The general syntax of DBCC CHECKDB is given below:

09MICROSOFT SQL DATABASE CORRUPTION — TROUBLESHOOTING GUIDE

ALL_ERRORMSGS

REPAIR_REBUILD

DBCC CHECKDB Argument Description

This argument instructs the CHECKDB command to do quick repair

tasks, such as repairing missing rows and rebuilding an index.

REPAIR_REBUILD doesn’t pose any risk of data loss, but it also

cannot repair errors involving FILESTREAM data.

TABLOCK

TABLOCK argument specifies the command to apply a temporary

lock on the database instead of obtaining its snapshot. The

arguments limits the number of checks, allowing DBCC CHECKDB

to run faster.

This option specifies the command to repair all the reported errors;

however, it might result in data loss. Microsoft places a caution on

using REPAIR_ALLOW_DATA_LOSS as the “last resort” option as it

may result in more data loss than restoring the database from the

last working backup.

This argument displays all the errors reported for the individual

objects in the SQL database.

ESTIMATEONLY
This argument simply displays the approximate tempdb space

required to run the DBCC CHECKDB command.

NO_INFOMSGS This argument suppresses all the information messages.

EXTENDED_LOGICAL_CHECKS
This argument extends the logical checks to the indexed view, XML

indexes, and spatial indexes as applicable.

REPAIR_ALLOW_DATA_LOSS

PHYSICAL_ONLY argument limits the command to check the

integrity of only the physical structure of the page, record headers,

and allocation consistency. The argument can also detect torn

pages, checksum issues, and hardware malfunction.

PHYSICAL_ONLY

This argument specifies the command to check the invalid column

values in the database. For example, DATA_PURITY checks the

out-of-range date and time values for the datetime data type.

DATA_PURITY

10MICROSOFT SQL DATABASE CORRUPTION — TROUBLESHOOTING GUIDE

How to run DBCC CHECKDB command on a SQL instance?

Follow these steps to run DBCC CHECKDB using SQL Server Management Studio (SSMS):

1. Start SQL Server Management Studio and select Object Explorer > Connect > Database Engine.

2. Enter the following information in the Connect to Server dialog box:

 a. Server type: select Database Engine which is the default option.

 b. Server name: enter the fully qualified server name.

 c. Authentication: use Windows Authentication as the default option.

 d. Login ID and Password: Enter the user ID and password to log in to the server.

11MICROSOFT SQL DATABASE CORRUPTION — TROUBLESHOOTING GUIDE

3. Click Connect to establish the SQL Server connection. You will notice the server listed in Object

Explorer.

4. Next, expand the “Databases” folder, and right click the database you need to query, and select New

Query.

12MICROSOFT SQL DATABASE CORRUPTION — TROUBLESHOOTING GUIDE

5. Run the DBCC CHECKDB command on the database, as follows:

Example 1: Use of DBCC CHECKDB to detect logical and physical errors in a database.

Example 2: Use of WITH ALL_ERRORMSGS and NO_INFOMSGS parameters to display all the error

messages while suppressing the informational messages.

STEP 2: DETERMINE THE ROOT CAUSE OF CORRUPTION
After checking the database integrity and corruption errors, the next step is to determine the root

cause(s), which helps avoid repeat instances and facilitates a targeted resolution if required. The below

table maps the SQL database engine error codes to their root causes.

DBCC CHECKDB (‘test_database’)

DBCC CHECKDB (N ‘test_database’) WITH ALL_ERRORMSGS, NO_INFOMSGS; |

SQL error 823

Error Code Root Cause

Hardware problem, typically in the storage system or a driver

SQL error 825 Severe issues in the disk hardware

SQL error 824 Disk failure, disk firmware issues, faulty driver, etc.

SQL error 8930 Inconsistent metadata

SQL error 8946 Likely a storage disk problem if the error is encountered frequently.

SQL error 9004 Might occur due to hardware, file system, and Input/output issues.

SQL error 605

• Failure of disk drive or other hardware

• Broken page chain

• Index Allocation Map (IAM) corruption

SQL error 3624
• Application bug

• Data corruption

SQL error 5172
• Hardware malfunctioning

• Data corruption

SQL error 926 or 963

• Hardware issue

• Input Output error

• Torn page

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

13MICROSOFT SQL DATABASE CORRUPTION — TROUBLESHOOTING GUIDE

STEP 3: ADDRESS THE ROOT CAUSES OF CORRUPTION
Microsoft SQL Server documentation makes several suggestions to address the root causes of different

errors. These suggestions majorly include the following user actions:

1. Review the suspect_pages in the database

2. Examine the Windows Event logs for the error messages

3. Check with the hardware vendor or OEM for compatibility issues. Use the manufacturer-supplied

 diagnostic utility to assess the I/O system

4. Examine the presence of filter drivers and evaluate whether these require updating or need to be

 removed altogether

5. Turn ON the PAGE_VERIFY CHECKSUM option to check page consistency

6. Use the SQLIOSim utility to simulate SQL Server functioning on a disk subsystem

7. For error 605, determine the tables associated with the allocation units using the following query,

 & then run DBCC CHECKDB for database repair (the detailed procedure is described in the following

 section).

USE`test_database`;

GO

SELECT au.allocation_unit_id, OBJECT_NAME(p.object_id) AS table_name, fg.name AS
filegroup_name,

au.type_desc AS allocation_type, au.data_pages, partition_number

FROM sys.allocation_units AS au

JOIN sys.partitions AS p ON au.container_id = p.partition_id

JOIN sys.filegroups AS fg ON fg.data_space_id = au.data_space_id

WHERE au.allocation_unit_id = `allocation_unit_id` OR au.allocation_unit_id =
`allocation_unit_id`

ORDER BY au.allocation_unit_id;

GO

14MICROSOFT SQL DATABASE CORRUPTION — TROUBLESHOOTING GUIDE

8. Restore the database from a clean backup, if available. However, consider the backup recency and

 completeness against the predefined recovery SLAs.

9. Repair and fix SQL database issues using DBCC CHECKDB.

REPAIRING SQL DATABASE CORRUPTION
This section describes the use of DBCC CHECKDB commands to repair corrupted SQL Server databas-

es. There are multiple types of arguments or parameters, including REPAIR_FAST, REPAIR_REBUILD,

and REPAIR_ALLOW_DATA_LOSS to instruct a repair action using the DBCC command.

As noted earlier in this Guide, REPAIR_FAST does not perform an actual repair but simply preserves the

syntax for backward compatibility. REPAIR_REBUILD is used for fixing minor issues like missing rows

and is generally safe, i.e., there is no data loss. However, it cannot repair corruption errors having

FILESTREAM data. Lastly, there is REPAIR_ALLOW_DATA_LOSS option that can resolve all types of

corruption issues but will almost always result in data loss.

The following steps illustrate the use of DBCC CHECKDB with REPAIR_REBUILD and REPAIR_ALLOW_-

DATA_LOSS arguments:

Step 1: Firstly, take a physical backup of the corrupted database, including the primary and secondary

database files, transaction logs, memory-optimized data, etc. This step is crucial to ensure the original

database remains intact even if something goes unexpected.

Step 2: Set the database to Emergency mode and then switch it over to Single-User mode using the

following command—

The ROLLBACK argument allows rollback of incomplete transactions.

Step 3: Run DBCC CHECKDB with REPAIR_REBUILD argument as follows:

In the above example, the command will fix errors in the non-clustered indexes of the database and

return the access to all the users.

ALTER DATABASE test_database SET EMERGENCY;
GO
ALTER DATABASE test_database SET SINGLE_USER WITH ROLLBACK IMMEDIATE;
GO

DBCC CHECKDB (N'test_database',REPAIR_REBUILD) WITH NO_INFOMSGS, ALL_ERRORMSGS;
GO
ALTER DATABASE test_database SET MULTI_USER;

15MICROSOFT SQL DATABASE CORRUPTION — TROUBLESHOOTING GUIDE

Step 4: Execute DBCC CHECKDB with REPAIR_ALLOW_DATA_LOSS argument as follows:

The result of the command will appear like the below snippet.

It is obvious that the command has eliminated the database errors. However, it also deallocat-

ed multiple pages from the Table object, which are lost forever.

DBCC CHECKDB(‘test_database’, REPAIR_ALLOW_DATA_LOSS)
GO
ALTER DATABASE test_database SET MULTI_USER;
GO

DBCC results for 'test_database'.
Repair: The page (1:166) has been deallocated from object ID 2121058256, index ID
0, partition ID 72057594039042048, alloc unit ID 72057594043301888 (type In-row
data).
Msg 8928, Level 16, State 1, Line 1
Object ID 2121058256, index ID 0, partition ID 72057594039042048, alloc unit ID
72057594043301888 (type In-row data): Page (1:166) could not be processed. See
other errors for details.
 The error has been repaired.
Msg 8939, Level 16, State 98, Line 1
Table error: Object ID 2121058256, index ID 0, partition ID 72057594039042048,
alloc unit ID 72057594043301888 (type In-row data), page (1:166). Test (IS_OFF
(BUF_IOERR, pBUF->bstat)) failed. Values are 29362185 and -4.
 The error has been repaired.
There are 930 rows in 14 pages for object "test_database".
 The error has been repaired.
Msg 8939, Level 16, State 98, Line 1
Table error: Object ID 2121058256, index ID 0, partition ID 72057594039042048,
alloc unit ID 72057594043301888 (type In-row data), page (1:166). Test (IS_OFF
(BUF_IOERR, pBUF->bstat)) failed. Values are 29362185 and -4.
 The error has been repaired.
There are 930 rows in 14 pages for object "test_database".

16MICROSOFT SQL DATABASE CORRUPTION — TROUBLESHOOTING GUIDE

SQL DATABASE REPAIR TOOL
Troubleshooting SQL database corruption is challenging and strenuous due to the vast scenarios that

culminate in unforeseen errors and circumstances. A few database errors like boot page corruption

and non-transient errors (like event ID 926) are considered irreparable, even using DBCC CHECKDB,

and need backup restoration. However, restoring a backup database has its challenges, such as the

availability of a clean backup and whether it meets the recovery SLAs, i.e., recovery point objective

(RPO) and recovery time objective (RTO). Native database repair procedures using DBCC CHECKDB with

REPAIR_ALLOW_DATA_LOSS can fix a majority of errors but forces the Administrator to accommodate

trade-offs like permanent data loss. In this context, third-party SQL database repair tools have

considerable relevance as they are purpose-built to address all types of database corruption issues

with a continually evolving scope. For example, Stellar Toolkit for MS SQL is a professional software

package known for repairing corrupted database file, transaction log file, & backup, enabling recovery

in vast scenarios.

CLOSING NOTES
This Guide shared insights into SQL database corruption, types and scenarios, troubleshooting through

database integrity checks, mapping the specific causes, and user actions. It outlined SQL database

repair procedure using DBCC CHECKDB with specific arguments. Our goal is to keep this knowledge

resource up-to-date and evergreen to serve as a helpful and expansive reference on SQL database

corruption.

REFERENCES
SQL Database Engine Errors

DBCC CHECKDB (Transact-SQL)

Query a SQL Server using SSMS

EXCHANGE DATABASE CORRUPTION — TROUBLESHOOTING GUIDE 16EXCHANGE DATABASE CORRUPTION — TROUBLESHOOTING GUIDE

DOWNLOAD FROM:
https://www.stellarinfo.com/sql-database-toolkit.php

Stellar Toolkit for MS SQL

Stellar & Stellar Data Recovery are Registered Trademarks of Stellar Information Technology Pvt. Ltd.

© Copyright 2021 Stellar Information Technology Pvt. Ltd. All Trademarks Acknowledged.

support@stellarinfo.com www.stellarinfo.com+1-877-778-6087 (Tollfree)

